library(shiny)
library(markdown)
#install.packages("kst")
library("kst")
#install.packages("pks")
library("pks")
#install.packages("DAKS")
library("DAKS")
#install.packages("Rgraphviz")
library(Rgraphviz)
#install.packages("kstMatrix")
library(kstMatrix)
#install.packages('shinyBS')
library(shinyBS)
#install.packages("plotrix")
library(plotrix)
PAGE_TITLE <- "Validating simulated data in knowledge space theory"
legend.text = c("dpot = average difference between power set and knowledge structure", "dpot")
spaceselection <- c(
"Density" = "density97",
"Matter" = "matter97",
"DoignonFalmagne7" = "DoignonFalmagne7"
)
data("DoignonFalmagne7")
data("Taagepera")
# Define UI ----
ui <- fluidPage(
includeScript("../../../Matomo-tquant.js"),
theme = "bootstrap.css",
titlePanel(windowTitle = PAGE_TITLE,
tags$a(imageOutput("tquant.png", width = "5px", height = "5px"), href="https://tquant.eu/", PAGE_TITLE
))
,
fluidRow(column(width = 3,
selectInput("spacesel", "Select your knowledge structure", spaceselection),
sliderInput(
"beta",
"Careless error rate",
min = 0,
max = 0.5,
step = 0.01,
value = 0.1
),
sliderInput(
"eta",
"Lucky guess rate",
min = 0,
max = 0.5,
step = 0.01,
value = 0.25
),
numericInput(
"n",
"Number of respondents",
min = 10,
max = 5000,
value = 500
),
actionButton("new", "New Simulation")
),
column(9, plotOutput("ex1"))),
fluidRow(column(width = 6,
plotOutput("bar_plot")),
column(3, plotOutput("hist")),
column(3, tableOutput("tab"))),
fluidRow(column(6,plotOutput("legend")),
column(6, textOutput("txt1"),
textOutput("txt2"),
textOutput("txt3"),
textOutput("txt4"))
))
# Define server logic ----
server <- function(input, output) {
output$legend <- renderPlot({
plot.new()
legend(x = "top",
legend = c(
"States",
"Non-States"
),
col = c("green", "red"),
lwd = 7
)
})
selections <- reactiveValues(eta = 0.1, beta = 0.25, n = 500, data = density97$K)
pkst <- reactiveValues(pkst = kmsimulate(density97$K, 500, .25, .1))
observeEvent(input$new, {
output$bar_plot <- renderPlot({
kst <- selections$data
pkst$pkst <- kmsimulate(selections$data, selections$n, selections$beta, selections$eta)
pnr <- as.pattern(pkst$pkst, freq = TRUE)
cols <- vector(mode = "character", length = length(pnr))
names(cols) <- names(pnr)
cols[] <- "red"
cols[rownames(kst)] <- "green"
barplot(pnr,
horiz = TRUE,
space = 0.4,
names.arg = names(pnr),
cex.names = 0.75,
las = 1,
col=cols,
main = "Simulated response pattern frequencies")
})
})
observeEvent(input$beta, {
selections$beta <- input$beta
})
observeEvent(input$eta, {
selections$eta <- input$eta
})
observeEvent(input$n, {
selections$n <- input$n
})
observeEvent(input$spacesel, {
if (input$spacesel == "density97")
selections$data <- density97$K
else if (input$spacesel == "matter97")
selections$data <- matter97$K
else if (input$spacesel == "DoignonFalmagne7")
selections$data <- DoignonFalmagne7$K
})
output$bar_plot <- renderPlot({
kst <- selections$data
pkst$pkst <- kmsimulate(selections$data, selections$n, selections$beta, selections$eta)
pnr <- as.pattern(pkst$pkst, freq = TRUE)
cols <- vector(mode = "character", length = length(pnr))
names(cols) <- names(pnr)
cols[] <- "red"
cols[rownames(kst)] <- "green"
barplot(pnr,
horiz = TRUE,
space = 0.4,
names.arg = names(pnr),
cex.names = 0.75,
las = 1,
col=cols,
main = "Simulated responses",
xlab = "Frequency")
})
output$ex1 <- renderPlot({
ex1 <- selections$data
plot(as.famset(ex1), main = "Hasse Diagram")
})
output$hist <- renderPlot({
validateD <- kmvalidate(pkst$pkst, selections$data)
dpot <- validateD$DI / validateD$DA #dpot --> DI / DA
ddat <- validateD$DI
barplot(c(dpot, ddat), width = 1, names.arg = c("dpot","ddat"), col = c("#6699FF","#3366CC"), ylim = c(0,1), las = 1,
border = NA, main = "Validation")
})
output$tab <- renderTable({
validateD <- kmvalidate(pkst$pkst, selections$data)
#data.frame(row.names = names(validateD$dist), frequency = as.character(validateD$dist)))
data.frame(dist = names(validateD$dist), frequency = as.character(validateD$dist))
})
output$example <- renderUI({
tags$a(imageOutput("tquant.png"),href="https://tquant.eu/")
})
output$txt1 <- renderText({
c(paste("DA = ddat / dpot = ",collapse = "\n"), round(print((kmvalidate(pkst$pkst, selections$data))$DA), digits = 3))
})
output$txt2 <- renderText({
"ddat: average minimal distance between each response pattern and the nearest state in the knowledge structure"
})
output$txt3 <- renderText({
"dpot: average minimal distance between the power set of all potential response patterns and the nearest state in the knowledge structure"
})
output$txt4 <- renderText({
"DA: distance agreement coefficient"
})
}
# Run the app ----
shinyApp(ui = ui, server = server)