In this task, the following app is to be adapted. First, run the app in an R console and take a close look at it. Then work on the following tasks one after the other.
library(shiny)
# User interface with slider (input) and plot (output)
<- fluidPage(
ui sliderInput(inputId = "n",
label = "Number of samples",
min = 1, max = 100, value = 10),
plotOutput(outputId = "hist")
)
# Server function connecting input and output
<- function(input, output){
server $hist <- renderPlot({
output<- rnorm(input$n) # draw n random values
x hist(x, main = "Histogram")
})
}
shinyApp(ui = ui, server = server)
titlePanel()
inside the
fluidPage()
function.library(shiny)
# User interface with slider (input) and plot (output)
<- fluidPage(
ui #######################################################
titlePanel("Histogram of random values"),
# Alternatively, an HTML tag can be used.
# Note: in this case, however, no title tag is set in the header
# (i.e. the title is not displayed in the browser tab).
# titlePanel() does this automatically.
# tags$h2("Histogram of random values"),
#######################################################
sliderInput(inputId = "n",
label = "Number of samples",
min = 1, max = 100, value = 10),
plotOutput(outputId = "hist")
)
# Server function connecting input and output
<- function(input, output){
server $hist <- renderPlot({
output<- rnorm(input$n) # draw n random values
x hist(x, main = "Histogram")
})
}
shinyApp(ui = ui, server = server)
"n"
can only move
between 50 and 1000 in increments of 50. See ?sliderInput
for help.library(shiny)
# User interface with slider (input) and plot (output)
<- fluidPage(
ui titlePanel("Histogram of random values"),
#######################################################
sliderInput(inputId = "n",
label = "Number of samples",
min = 50, max = 1000, value = 50, step = 50),
#######################################################
plotOutput(outputId = "hist")
)
# Server function connecting input and output
<- function(input, output){
server $hist <- renderPlot({
output<- rnorm(input$n) # draw n random values
x hist(x, main = "Histogram")
})
}
shinyApp(ui = ui, server = server)
selectInput()
or
radioButtons()
) and let the user choose among drawing
samples from three distributions: normal, uniform
(runif()
), or exponential (rexp()
). Use
switch()
to adjust the logic in the server function. See
?switch
for help.library(shiny)
# User interface with slider (input) and plot (output)
<- fluidPage(
ui titlePanel("Histogram of random values"),
sliderInput(inputId = "n",
label = "Number of samples",
min = 50, max = 1000, value = 50, step = 50),
#######################################################
#selectInput(inputId = "distribution",
# label = "Distribution",
# choices = c("normal", "uniform", "exponential")),
radioButtons(inputId = "distribution",
label = "Distribution",
choices = c("normal", "uniform", "exponential")),
#######################################################
plotOutput(outputId = "hist")
)
# Server function connecting input and output
<- function(input, output){
server $hist <- renderPlot({
output#######################################################
<- switch(input$distribution,
x normal = rnorm(input$n),
uniform = runif(input$n),
exponential = rexp(input$n)
) # draw n random values from the chosen distribution
#######################################################
hist(x, main = "Histogram")
})
}
shinyApp(ui = ui, server = server)
checkboxInput()
to the UI. When the box is
ticked, the distribution from which random values are drawn should be
drawn into the histogram using curve()
.The y-axis of the histogram must represent the density (argument
freq = FALSE
). To draw the curve into the histogram, the
argument add = TRUE
must be set for
curve()
.
library(shiny)
# User interface with slider (input) and plot (output)
<- fluidPage(
ui titlePanel("Histogram of random values"),
sliderInput(inputId = "n",
label = "Number of samples",
min = 50, max = 1000, value = 50, step = 50),
radioButtons(inputId = "distribution",
label = "Distribution",
choices = c("normal", "uniform", "exponential")),
#######################################################
# Add checkbox UI
checkboxInput("show_distribution", "Show distribution in histogram"),
#######################################################
plotOutput(outputId = "hist")
)
# Server function connecting input and output
<- function(input, output){
server $hist <- renderPlot({
output<- switch(input$distribution,
x normal = rnorm(input$n),
uniform = runif(input$n),
exponential = rexp(input$n)
)
#######################################################
# freq = FALSE -> plot density on y-axis
hist(x, main = "Histogram", freq = FALSE)
#######################################################
# Add server logic: if input$show_distribution is TRUE
# the selected distribution (input$distribution) is added to the hist()
if(input$show_distribution){
switch(input$distribution,
normal = curve(dnorm, from = -6, to = 6,
add = TRUE, col = "red", lty = 2),
uniform = curve(dunif, from = 0, to = 1,
add = TRUE, col = "red", lty = 2),
exponential = curve(dexp, from = 0, to = 10,
add = TRUE, col = "red", lty = 2))
}#######################################################
})
}
shinyApp(ui = ui, server = server)
checkboxInput()
is clicked, new values are drawn.Move the part where the values are drawn into a reactive expression
using reactive({})
.
library(shiny)
# User interface with slider (input) and plot (output)
<- fluidPage(
ui titlePanel("Histogram of random values"),
sliderInput(inputId = "n",
label = "Number of samples",
min = 50, max = 1000, value = 50, step = 50),
radioButtons(inputId = "distribution",
label = "Distribution",
choices = c("normal", "uniform", "exponential")),
checkboxInput("show_distribution", "Show distribution in histogram"),
plotOutput(outputId = "hist")
)
# Server function connecting input and output
<- function(input, output){
server
#######################################################
# Move drawing proces into reactive expression
<- reactive({
get_data switch(input$distribution,
normal = rnorm(input$n),
uniform = runif(input$n),
exponential = rexp(input$n)
)
})#######################################################
$hist <- renderPlot({
output
#######################################################
# refer back to reactive expression get_data()
# add xlab (not necessary, but nicer)
hist(get_data(), main = "Histogram", freq = FALSE, xlab = "x")
#######################################################
if(input$show_distribution){
switch(input$distribution,
normal = curve(dnorm, from = -6, to = 6,
add = TRUE, col = "red", lty = 2),
uniform = curve(dunif, from = 0, to = 1,
add = TRUE, col = "red", lty = 2),
exponential = curve(dexp, from = 0, to = 10,
add = TRUE, col = "red", lty = 2))
}
})
}
shinyApp(ui = ui, server = server)
sidebarLayout()
, sidebarPanel()
, and
mainPanel()
; (2) a custom layout using
fluidRow()
and column()
.library(shiny)
# User interface with slider (input) and plot (output)
<- fluidPage(
ui titlePanel("Histogram of random values"),
#######################################################
# Add sidebarLayout
sidebarLayout(
sidebarPanel(
sliderInput(inputId = "n",
label = "Number of samples",
min = 50, max = 1000, value = 50, step = 50),
radioButtons(inputId = "distribution",
label = "Distribution",
choices = c("normal", "uniform", "exponential")),
checkboxInput("show_distribution", "Show distribution in histogram")
),mainPanel(
plotOutput(outputId = "hist")
)
)#######################################################
)
# Server function connecting input and output
<- function(input, output){
server
<- reactive({
get_data switch(input$distribution,
normal = rnorm(input$n),
uniform = runif(input$n),
exponential = rexp(input$n)
)
})
$hist <- renderPlot({
output
hist(get_data(), main = "Histogram", freq = FALSE, xlab = "x")
if(input$show_distribution){
switch(input$distribution,
normal = curve(dnorm, from = -6, to = 6,
add = TRUE, col = "red", lty = 2),
uniform = curve(dunif, from = 0, to = 1,
add = TRUE, col = "red", lty = 2),
exponential = curve(dexp, from = 0, to = 10,
add = TRUE, col = "red", lty = 2))
}
})
}
shinyApp(ui = ui, server = server)
library(shiny)
# User interface with slider (input) and plot (output)
<- fluidPage(
ui titlePanel("Histogram of random values"),
#######################################################
# Add custom layout using fluidRow(), column() and
# wellPanel() to separate sections
wellPanel(
fluidRow(
column(6,
sliderInput(inputId = "n",
label = "Number of samples",
min = 50, max = 1000, value = 50, step = 50)
),column(2,
radioButtons(inputId = "distribution",
label = "Distribution",
choices = c("normal", "uniform", "exponential"))
),column(3,
checkboxInput("show_distribution", "Show distribution in histogram")
))),fluidRow(
plotOutput(outputId = "hist")
)#######################################################
)
# Server function connecting input and output
<- function(input, output){
server
<- reactive({
get_data switch(input$distribution,
normal = rnorm(input$n),
uniform = runif(input$n),
exponential = rexp(input$n)
)
})
$hist <- renderPlot({
output
hist(get_data(), main = "Histogram", freq = FALSE, xlab = "x")
if(input$show_distribution){
switch(input$distribution,
normal = curve(dnorm, from = -6, to = 6,
add = TRUE, col = "red", lty = 2),
uniform = curve(dunif, from = 0, to = 1,
add = TRUE, col = "red", lty = 2),
exponential = curve(dexp, from = 0, to = 10,
add = TRUE, col = "red", lty = 2))
}
})
}
shinyApp(ui = ui, server = server)
Draw the reactive graph by hand and compare it to the one created
using the reactlog
package (execute
options(shiny.reactlog = TRUE)
before you start the shiny
app to enable reactlog and press Ctrl + F3 or Command + F3 to display
the generated reactive graph).
Note: There are some additional “internal” nodes
(clientData$...
) in the graph created by reactlog. They are
responsible for rendering the plot correctly. You can simply ignore them
if you compare the graphs.
library(shiny)
options(shiny.reactlog = TRUE) # enable reactlog
# User interface with slider (input) and plot (output)
<- fluidPage(
ui titlePanel("Histogram of random values"),
#######################################################
# Add sidebarLayout
sidebarLayout(
sidebarPanel(
sliderInput(inputId = "n",
label = "Number of samples",
min = 50, max = 1000, value = 50, step = 50),
radioButtons(inputId = "distribution",
label = "Distribution",
choices = c("normal", "uniform", "exponential")),
checkboxInput("show_distribution", "Show distribution in histogram")
),mainPanel(
plotOutput(outputId = "hist")
)
)#######################################################
)
# Server function connecting input and output
<- function(input, output){
server
<- reactive({
get_data switch(input$distribution,
normal = rnorm(input$n),
uniform = runif(input$n),
exponential = rexp(input$n)
)
})
$hist <- renderPlot({
output
hist(get_data(), main = "Histogram", freq = FALSE, xlab = "x")
if(input$show_distribution){
switch(input$distribution,
normal = curve(dnorm, from = -6, to = 6,
add = TRUE, col = "red", lty = 2),
uniform = curve(dunif, from = 0, to = 1,
add = TRUE, col = "red", lty = 2),
exponential = curve(dexp, from = 0, to = 10,
add = TRUE, col = "red", lty = 2))
}
})
}
shinyApp(ui = ui, server = server)
# Press Ctrl + 3 (or Command + F3) to open the reactlog graph
PlantGrowth
datasetCreate a Shiny app that displays a boxplot for the
PlantGrowth
data in R.
Let the user select the groups to display.
Depending on the selected groups, the histogram could look like this: (You can adapt the code below for your app)
par(mfrow = c(1, 3))
## if all groups are selected:
boxplot(weight ~ group, PlantGrowth)
## if only group ctrl and trt2 are selected
<- droplevels(PlantGrowth[PlantGrowth$group %in% c("ctrl", "trt2"), ])
data boxplot(weight ~ group, data, axes = FALSE)
axis(2)
axis(1, at = 1:nlevels(data$group), labels = levels(data$group))
box()
## if only group trt1 is selected
<- droplevels(PlantGrowth[PlantGrowth$group %in% c("trt1"), ])
data boxplot(weight ~ group, data, axes = FALSE)
axis(2)
axis(1, at = 1:nlevels(data$group), labels = levels(data$group))
box()
Use checkboxGroupInput()
or selectInput()
to select the groups.
validate(need(...))
to display a message if no
group is selected. Otherwise, an error message could appear.Check whether the input variable in which the selected groups are
stored contains elements (e.g. using
length(input$...) > 0
)
t.test()
), or a one-way ANOVA
(oneway.test()
), depending on whether one, two, or three
groups are selected.# if only group ctrl and trt2 are selected
<- droplevels(PlantGrowth[PlantGrowth$group %in% c("ctrl", "trt2"), ])
data t.test(weight ~ group, data) # two-sample t test
# if only group trt1 is selected
<- droplevels(PlantGrowth[PlantGrowth$group %in% c("trt1"), ])
data t.test(data$weight, mu = 0) # one-sample t test
# all three groups
<- droplevels(PlantGrowth[PlantGrowth$group %in% c("ctrl", "trt1", "trt2"), ])
data oneway.test(weight ~ group, data) # one-way ANOVA
Use the var.equal
argument.
library(shiny)
<- fluidPage(
ui titlePanel("PlantGrowth"),
sidebarLayout(
sidebarPanel(
checkboxGroupInput(inputId = "groups",
label = "Select group(s)",
choices = c("control" = "ctrl",
"treatment 1" = "trt1",
"treatment 2" = "trt2")
),checkboxInput("checkb_vareq", "Treat variances as being equal?")
),mainPanel(
plotOutput("box_plot"),
verbatimTextOutput("result_test")
)
)
)
<- function(input, output){
server
<- reactive({
data validate(need(length(input$groups) > 0, "Please select at least one group."))
droplevels(PlantGrowth[PlantGrowth$group %in% input$groups, ])
})
$box_plot <- renderPlot({
outputboxplot(weight ~ group, data(), axes = FALSE)
axis(2)
axis(1, at = 1:nlevels(data()$group), labels = levels(data()$group))
box()
})
$result_test <- renderPrint({
outputreq(input$groups)
if(length(input$groups) == 1){
t.test(data()$weight, mu = 0)
else if(length(input$groups) == 2){
}t.test(weight ~ group, data(), var.equal = input$checkb_vareq)
else if(length(input$groups) == 3){
}oneway.test(weight ~ group, data(), var.equal = input$checkb_vareq)
}
})
}
shinyApp(ui = ui, server = server)
Use conditionalPanel()
(reminder: the condition has to
be a JavaScript expression, see ?conditionalPanel
for some
examples. In order to access the reactive input value in JS and
calculate its length use input['inputId'].length
) or
uiOutput()
paired with renderUI()
.
library(shiny)
<- fluidPage(
ui titlePanel("PlantGrowth"),
sidebarLayout(
sidebarPanel(
checkboxGroupInput(inputId = "groups",
label = "Select group(s)",
choices = c("control" = "ctrl",
"treatment 1" = "trt1",
"treatment 2" = "trt2")
),conditionalPanel("input['groups'].length > 1",
checkboxInput("checkb_vareq", "Treat variances as being equal?")
)
),mainPanel(
plotOutput("box_plot"),
verbatimTextOutput("result_test")
)
)
)
<- function(input, output){
server
<- reactive({
data validate(need(length(input$groups) > 0, "Please select at least one group."))
droplevels(PlantGrowth[PlantGrowth$group %in% input$groups, ])
})
$box_plot <- renderPlot({
outputboxplot(weight ~ group, data(), axes = FALSE)
axis(2)
axis(1, at = 1:nlevels(data()$group), labels = levels(data()$group))
box()
})
$result_test <- renderPrint({
outputreq(input$groups)
if(length(input$groups) == 1){
t.test(data()$weight, mu = 0)
else if(length(input$groups) == 2){
}t.test(weight ~ group, data(), var.equal = input$checkb_vareq)
else if(length(input$groups) == 3){
}oneway.test(weight ~ group, data(), var.equal = input$checkb_vareq)
}
})
}
shinyApp(ui = ui, server = server)
cars
datasetCreate a Shiny app with the user interface consisting of an
actionButton()
input and two outputs:
plotOutput()
and verbatimTextOutput()
. On each
button click
cars
data,summary()
) are shown.In the server function, use
getsamples <- eventReactive({...})
to be able to access
the same data set both within renderPlot()
and
renderPrint()
library(shiny)
<- fluidPage(
ui titlePanel("Bootstrap sampling"),
sidebarLayout(
sidebarPanel(
actionButton("new_sample", "New sample"),
$hr(),
tagsverbatimTextOutput("stats")
),mainPanel(
plotOutput("scatterplot")
)
)
)
<- function(input, output){
server
<- eventReactive(input$new_sample, {
getsamples sample(1:50, 50, replace = TRUE), ]
cars[
})
$scatterplot <- renderPlot({
outputplot(dist ~ speed, getsamples())
})
$stats <- renderPrint({
outputsummary(getsamples())
})
}shinyApp(ui = ui, server = server)
Expand the previous Shiny app.
To get two buttons to work in the server function, combine
reactiveValues()
and
observe()
/observeEvent()
. More here: https://shiny.rstudio.com/articles/action-buttons.html.
library(shiny)
<- fluidPage(
ui titlePanel("Bootstrap sampling"),
sidebarLayout(
sidebarPanel(
fluidRow(
column(6,
actionButton("new_sample", "New sample")
),column(6,
actionButton("reset", "Reset")
)
),checkboxInput("show_regr", "Show regression line"),
$hr(),
tagsverbatimTextOutput("stats")
),mainPanel(
plotOutput("scatterplot")
)
)
)
<- function(input, output){
server
<- reactiveValues(data = cars)
getsamples
observeEvent(input$new_sample,{
$data <- cars[sample(1:50, 50, replace = TRUE), ]
getsamples
})
observeEvent(input$reset,{
$data <- cars
getsamples
})
$scatterplot <- renderPlot({
outputplot(dist ~ speed, getsamples$data, xlim = c(0, 26), ylim = c(0, 125))
if(input$show_regr){
abline(lm(dist ~ speed, getsamples$data))
}
})
$stats <- renderPrint({
outputsummary(getsamples$data)
})
}shinyApp(ui = ui, server = server)
observe()
or observeEvent()
and reactiveValues()
and play a little bit with this graph
using the ‘Next Step / Previous Step’ button at the top. Try to
understand what happens if you click ‘Reset’ in the app and how this
process is represented in the graph.Develop a Shiny App with the following content:
Simulate data from the following model \[ y_i = \beta_0 + \beta_1 \cdot x_i + e_i\]
with \(e_i \sim N(\mu = 0, \sigma =
\sigma)\), \(i = 1, ..., n\) and
\(x_i \sim \mathcal{U}(0, 100)\). The
parameters \(\beta_0\) and \(\beta_1\) as well as \(\sigma\) and the sample size \(n\) should be freely adjustable by the user
(within a certain range).
Display the simulated data in a scatterplot.
Add the true regression line to the plot if a checkbox has been ticked.
Estimate a linear model based on the simulated data and plot the estimated regression line in the scatterplot as well. (but only if another checkbox has been ticked)
Give the inputs meaningful labels so that the user can understand what he can change with the inputs.
Add descriptions that help the user understand the app. In this context, you should also include the mathematical expression of the model in the app and briefly explain the parameters.
If you are still looking for a challenge, then let the user decide whether a quadratic or even cubic term should be included in the model. E.g.: \[ y_i = \beta_0 + \beta_1 \cdot x_i + \beta_2 \cdot x_i^2 + e_i\]
Feel free to show me the finished app and ask me for feedback :)